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Abstract

In this work, we present a conservative interface method for both multi-fluid and complex boundary problems, in which
the standard finite volume scheme on Cartesian grids is modified by considering computational cells being cut by interface.
While the discretized governing equations are updated conservatively, the method treats the topological changes naturally
by combining interface description and geometric operations with a level set technique. Extensive tests in 1D are carried
out, and 2D examples suggest that the present scheme is able to handle multi-fluid and complex (static or moving) bound-
ary problems in a straightforward way with good robustness and accuracy.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Various numerical methods have been developed to simulate and study the dynamics of compressible flows
at high speeds. In all cases, a significant difficulty encountered with these numerical computations is the treat-
ment of a material interface. In general, there are two main types of interface related problems: one is the
multi-fluid problem in which the interface separates interacting different fluids; the other is the complex
boundary problem in which the interface defines a complex, static or moving, boundary between the fluid
and a rigid solid wall or a body.

Usually, the interfaces for these two types of problems are treated in quite different ways. For a multi-fluid
problem, the interface is often defined on a Cartesian grid as a transition region with a steep gradient. Some
numerical methods using this ‘smeared’ interface representation are the volume of fluid (VOF) method
[1,18,49] or constrained interpolation profile (CIP) method [46]. For a complex boundary problem, the inter-
face is often defined as a non-smeared boundary of a structured body-fitted grid [4], or an unstructured grid
[23,28,36]. On the other hand, there are still alternative approaches in which the above two types of interfaces
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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are both treated on a Cartesian grid. One approach is to reconstruct a ‘‘smeared’’ complex boundary with the
VOF technique [19]. The other approach is to track both multi-fluid interfaces and complex boundaries with a
non-smearing representation. Glimm et al. [15] track the multi-fluid interface as a non-smeared internal mov-
ing boundary with a grid intersection technique. Similar geometric treatments of the boundary are also devel-
oped for Cartesian approaches to complex boundary problems [5,7,38,47,48]. Even though these mentioned
alternative approaches are conceptually simple there are two major limitations: one is that defining and track-
ing of the interface require rather complicated procedures with the grid intersection technique, especially in the
cases of large topology variations; the other is the lack of conservative properties, which usually leads to low
accuracy near the interface, especially when strong or long time scale interface interactions are involved.

The level set technique [10,34,43] is a reasonably easy way to define and track a non-smeared multi-fluid
interface. To deal with the issue of conservation, the original works of Berger and LeVque [5] and Quirk
[38] on complex boundary problems do not treat the interface specifically but use a complex adaptive mesh
refinement strategy to increase accuracy near the boundary. Other approaches, e.g. GFM (ghost fluid method)
and related methods [8,12,20,27] employ special internal boundary conditions at the multi-fluid interface in the
attempt to correct or reduced conservation errors. Fairly similar procedures can also be implemented for com-
plex boundary problems [2,13,14,21]. While these approaches have led to promising results they possess
strictly only a first-order convergence rate for the conservation errors. To handle the stability difficulty of a
conservative discretization with the VOF method, Colella [9] and Miller and Colella [32] introduced a redis-
tribution approach for multi-fluid problems in which conservation defects resulting from non-conservative
updates are redistributed onto neighboring cells according to mass weighting. Falcovitz et al. [11] satisfy con-
servation near a complex moving boundary by a Strang-type operator splitting. Glimm et al. [16] introduced a
conservative method based on a grid intersection technique, in which each small-size cut cell is merged with
one of its neighboring cells, for multi-fluid flows with the assumption of no topological change in the solution.

In this paper, we propose a Cartesian interface method suitable for both multi-fluid and complex boundary
problems. We use a standard finite volume scheme for the far interface region which is slightly modified for the
near interface region. Unlike Miller and Colella [32], the present method updates the discretized governing
equations fully conservative for both fluids individually and for interface exchanges in multi-fluid problems.
Small cut cells are treated with a mixing procedure which, however, is different from the approaches found in
[32,16]. As our mixing procedure is separated from the flux updating of conservative variables, it is easy to
implement, especially when complex geometries are considered. Also, unlike the work of Falcovitz et al.
[11], the present method offers a fairly simple implementation in multi-dimension and multi-level time integra-
tions without space–time splitting. The assumption of non-topological change as in [16] is not necessary in our
formulation. Furthermore, as the level set technique is used for the interface description and geometric oper-
ations, the method maintains the simplicity of GFM-like methods. Indeed, in our implementation, we use the
interface interaction method [20] to obtain the interface conditions for the near interface grid points. However,
these interface interactions are not employed for defining the ghost node states but for the direct calculation of
momentum and energy exchanges across the interface. Accordingly, the ghost node is filled only for the stencil
interpolation rather than for implementing the internal boundary condition common for GFM-like methods.

2. Overview of the method

Assuming the fluid is inviscid and compressible the governing equation of the flow can be written as a sys-
tem of conservation laws
oU

ot
þr � F ¼ 0 on X; ð1Þ
where U is the density of the conserved quantities of mass, momentum and total energy, and F represents the
corresponding flux functions. When an interface C(t) separates the domain X into two sub-domains X1(t) and
X2(t), as for a multi-fluid problem, the evolution of the interface is determined by the interface condition given
by a two-material Riemann problem
RðUfluid1;Ufluid2Þ ¼ 0 on CðtÞ: ð2Þ
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When a complex boundary problem is considered, the evolution of the interface is determined by the bound-
ary velocity vrg. The pressure on the interface is then determined by the one-sided Riemann problem
RðUfluid; vrgÞ ¼ 0 on CðtÞ: ð3Þ

The boundary velocity can be prescribed. If the associated rigid solid body moves according to an inertial cou-
pling the acceleration arg(t) can be calculated by
argðtÞ ¼
1

mrg

Z
CðtÞ

p ds ð4Þ
in which the integration is carried out over the entire interface, and mrg is the solid body mass.
Following Miller and Colella [32], we consider Eq. (1) for the fluid occupying the sub-domain X1 on a two-

dimensional Cartesian grid with grid spacings Dx and Dy. A finite volume discretization can be obtained from
integrating Eq. (1) over the space–time volume Dij ˙ X1(t) of a computational cell (i, j) occupied by the fluid
Z nþ1

n
dt
Z

Dij\X1ðtÞ
dx dy

oU

ot
þr � F

� �
¼ 0; ð5Þ
where Dij = DxDy is the cell volume. Dij \ X1(t) can be represented by ai,j(t)DxDy where ai,j(t) is the time
dependent volume fraction of the considered fluid and satisfying 1 P a P 0. By an application of Gauss’s the-
orem, one obtains
Z nþ1

n
dt
Z

Dij\X1ðtÞ
dx dy

oU

ot
þ
Z nþ1

n
dt
Z

oDij\CðtÞ
dx dy F � n ¼ 0; ð6Þ
where oDij are the four cell faces intersecting orthogonally with the grid at four locations (xi + Dx/2,yj),
(xi,yj + Dy/2), (xi � Dx/2,yj) and (xi,yj � Dy/2). Denoting the interface location as C(t), as shown in Fig. 1,
oDij \ C(t) can be represented by two parts: one is the combination of the four segments of the cell faces being
cut by the interface, which can be written in the form of Ai+1/2,j(t)D y,Ai,j+1/2(t)Dx,Ai�1/2,j(t)Dy and Ai,j�1/2(t)Dx

where 1 P A P 0 is the aperture; the other one is the segment of the interface DCi,j(t) inside of the cell (i, j).
Hence, Eq. (6) can be rewritten as
( )i+1,j
i,j

In

( )i,j( )i-1,j

( )i,j-1

( )i,j+1

i,j

n+1

In+1

i,j

n

Ai,j+1/2

Ai,j-1/2

A
i-

1/
2,

j A =0i ,j+1/2

+

Fig. 1. Schematic of conservative discretization for a cut cell.
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anþ1
i;j Unþ1

i;j � an
i;jU

n
i;j

� �
Dt¼

Z nþ1

n
dt

1

Dx
Aiþ1=2;jðtÞF̂iþ1=2;j�Ai�1=2;jðtÞF̂i�1=2;j

h i

þ
Z nþ1

n
dt

1

Dy
Ai;jþ1=2ðtÞF̂i;jþ1=2�Ai;j�1=2ðtÞF̂i;j�1=2

h i
þ
Z nþ1

n
dt

1

DxDy
X̂ Ci;jðtÞ
� �

; ð7Þ
where Dt is the time step size. ai,j(t)Ui,j and Ui,j are the conservative quantities in the cut cell and the cell-aver-
aged density of conservative quantities of the considered fluid, respectively. F̂ is the average cell-face flux and
X̂½Ci;jðtÞ� is the average momentum and energy exchange across the interface segment determined by the inter-
face interaction of Eq. (2) or (3). With explicit first-order forward time difference, the above equation can be
approximated as
anþ1
i;j Unþ1

i;j ¼ an
i;jU

n
i;j þ

Dt
DxDy

X̂ðDCi;jÞ þ
Dt
Dx

Ai�1=2;jF̂i�1=2;j � Aiþ1=2;jF̂iþ1=2;j

h i

þ Dt
Dy

Ai;j�1=2F̂i;j�1=2 � Ai;jþ1=2F̂i;jþ1=2

h i
: ð8Þ
Note that all the terms on the right-hand side are evaluated at time step n. For full cells which are not cut by an
interface, volume fractions and apertures become unity and the corresponding interface segments DCi,j vanish.
Eq. (8) then simplifies to
Unþ1
i;j ¼ Un

i;j þ
Dt
Dx

F̂i�1=2;j � F̂iþ1=2;j

� �
þ Dt

Dy
F̂i;j�1=2 � F̂i;jþ1=2

� �
ð9Þ
recovering a standard finite volume scheme on a two-dimensional Cartesian grid. On the other hand, since
being effective only in cutting cells, Eq. (8) can also be viewed as a slight modification of Eq. (9) near the
interface.

It can be found that global conservation for the considered fluid is satisfied by summing Eq. (8) over the
entire domain
X
i;j

anþ1
i;j Unþ1

i;j ¼
X

i;j

an
i;jU

n
i;j þ

X
i;j

Dt
DxDy

X̂ðDCi;jÞ þ boundary terms; ð10Þ
where the interface-exchange term (second term on right-hand side) vanishes in all full cells. Note that for
two-fluid problems, the evolution of each fluid is computed by solving Eq. (8) where the interface-exchange
term has opposite sign. Therefore, overall conservation can be achieved by summing Eq. (10) for the two
fluids
X

k¼1;2

X
i;j

anþ1
i;j Unþ1

i;j ¼
X
k¼1;2

X
i;j

an
i;jU

n
i;j þ boundary terms: ð11Þ
Here, we make the following remarks:

� As standard Cartesian finite volume schemes are used for the discretization of differential operators, the
location of the centroid of a cut cell is always approximated by the location of a grid point. This approach
has been used with much success previously [35,32].
� Whenever the volume fraction of a cut cell becomes small a mixing procedure is applied to avoid an extre-

mely small time step.
� For higher order time integration a Runge–Kutta scheme can be employed while maintaining discrete con-

servation since every Runge–Kutta sub-step can be formulated as Eq. (8).
� The extension of the above formulations to three dimensions is fairly straightforward.

In the remainder of the paper we elaborate on the above ideas and implementations. The description of
interface related issues can be found in Section 3. Our method is based on the level set technique. Besides
the interface advection, re-initialization and state extrapolation follow previous works [12,20]. New methods
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are proposed to calculate the cell-face apertures and volume fractions. In Section 4 a novel but simple and low
dissipation mixing procedure is introduced. In Section 5 the interface interaction terms are derived. In Section
6 the detailed implementation steps are given in the context of applications to multi-fluid and complex bound-
ary problems, and possible extension to three dimensions. Finally, numerical examples in one and two dimen-
sions and brief concluding remarks are given in Sections 7 and 8, respectively.
3. Interface description

3.1. Level set function

We associate the computational domain X with a signed distance function /(x,y, t), that is $|/| = 1, called
the level set function [34]. Knowing / we may locate the interface by finding the zero level set of /. That is
C(t) = {x,y :/(x,y, t) = 0} which divides the entire domain into two sub-domains, each of which corresponds
to a fluid or a solid body, with opposite signs of the level set function /. In this paper, the aperture and volume
fraction for a computational cell are defined as A+ and a+ for the fluid region corresponding to / > 0, while
A� and a� for the fluid region corresponding to / < 0.

For simple geometries described with lines or circles, the initial level set function can be constructed directly
by using one or more distance functions to the given curves. If more complex interfaces are considered the
initial level set function is difficult to be specified analytically, and usually needs to be constructed numerically
from a set of connected edges or surface patches on vertices. The first step for the construction is to determine
whether a grid point is inside or outside of the interface. Many point classifications, such as the ray intersec-
tion method [22], can be easily implemented. Next, we find a point on the interface having a minimum distance
to the grid point, and designate the minimum distance and the direction to this point as the magnitude of /
and its normal direction, respectively.

With the level set initialized at the grid points it can be found that the continuous updating of / is equiv-
alent to the advection of the interface by the equation
/t þ u/x þ v/y ¼ 0; ð12Þ
where u and v are the velocity components for the level sets in the x and y directions, respectively. High-order
schemes [12,40] have been developed to solve Eq. (12). In practice, the level sets are only updated in the near
interface region, which usually includes the first and second nearest cell-layers. For the region far from the
interface the level sets are re-initialized [43] by the equation
/s þ sgnð/Þðjr/j � 1Þ ¼ 0; ð13Þ
where sgn(/) is a sign function, to maintain the signed distance property of level set function. To allow for
stencil interpolation near the interface in terms of standard finite volume schemes [12] and solving for the
interface conditions on grid points in near interface region [20], the fluid states are extrapolated to the other
side of the interface by the extending equation
qs �N � rq ¼ 0: ð14Þ
Here q is the extended fluid state and N ” (Nx,Ny) is the normal direction of the level set. On may note that +N

is used to extend quantities from sub-domain with / < 0 to sub-domain with / > 0, while �N is used to extend
quantities from sub-domain with / > 0 to sub-domain with / < 0. For a given q the extending equation can be
solved until a steady solution in the near interface region is reached.

3.2. Cell-face apertures

In this paper, the cell-face apertures are calculated according to the level set distribution along the cell face.
On a two-dimensional Cartesian grid, the level set function at the corners of a cell centered at (i, j) is approx-
imated by
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/iþ1=2;jþ1=2 ¼
1

4
/i;j þ /iþ1;j þ /i;jþ1 þ /iþ1;jþ1

� 	
;

/iþ1=2;j�1=2 ¼
1

4
/i;j þ /iþ1;j þ /i;j�1 þ /iþ1;j�1

� 	
;

/i�1=2;jþ1=2 ¼
1

4
/i;j þ /i�1;j þ /i;jþ1 þ /i�1;jþ1

� 	
;

/i�1=2;j�1=2 ¼
1

4
/i;j þ /i�1;j þ /i;j�1 þ /i�1;j�1

� 	
:

ð15Þ
A sign change of the level-set function along a cell face implies that the cell face is cut by the interface. For
such cells, by assuming a linear distribution of / the cell-face apertures can be calculated as
Aiþ1=2;j ¼ aiþ1=2;j if /iþ1=2;jþ1=2 > 0 else 1� aiþ1=2;j;

Ai�1=2;j ¼ ai�1=2;j if /i�1=2;jþ1=2 > 0 else 1� ai�1=2;j;

Ai;jþ1=2 ¼ bi;jþ1=2 if /iþ1=2;jþ1=2 > 0 else 1� bi;jþ1=2;

Ai;j�1=2 ¼ bi;j�1=2 if /iþ1=2;j�1=2 > 0 else 1� bi;j�1=2;

ð16Þ
where ai�1=2;j ¼
j/i�1=2;jþ1=2j

j/i�1=2;jþ1=2jþj/i�1=2;j�1=2j
and bi;j�1=2 ¼

j/iþ1=2;j�1=2j
j/iþ1=2;j�1=2jþj/i�1=2;j�1=2j

. Fig. 2 shows the schematic of the calcula-

tion for Ai+1/2,j. If level set does not change sign along a cell face, the aperture is either 1 (positive sign) or 0
(negative sign). Note that the above cell-face apertures, denoted as A+, are for the fluid region corresponding
to / > 0. For the fluid corresponding to / < 0, the cell-face apertures are A� = 1 � A+.

3.3. Volume fractions

With the standard level set technique [43], the volume fraction aþi;j for the fluid corresponding to / > 0 can
be approximated by a smoothed Heaviside function aþi;j ¼ Hð/i;j; eÞ where e is a small positive number such as
the grid size. The volume fraction a� for the fluid corresponds to / < 0 can be calculated by the relation
a� = 1 � a+. A simple form of the smoothed Heaviside function can be written as
( )i,j( )i-1,j

( )i,j-1

( )i ,j+1

(i+1/2,j+1/2)

(i+1/2,j-1/2)

A
i+

1/
2,

j

( )i,j+1

Fig. 2. The calculation of the aperture Ai+1/2,j.
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Hð/; eÞ ¼
0 / < �e;
1
2
þ /

2eþ 1
2p sin p/

e

� 	
�e 6 / 6 e;

1 / > e;

8><
>: ð17Þ
which depends on the level set values only. By including more information on the level set normal direction a
more accurate calculation for the two-dimensional volume fraction [21] can be given as
Hð/; eÞ ¼

0 if K > C; / < 0;
1
2
þ 1

e2 D/þ 1
2

K2

eC if C P K P 0; / < 0;
1
2
þ 1

e2 D/ if K < 0;

1
2
þ 1

e2 D/� 1
2

K2

eC if C P K P 0; / > 0;

1 if K > C; / > 0

8>>>>>><
>>>>>>:

ð18Þ
in which D ¼ e minð 1
jNxj;

1
jNy jÞ, C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � e2
p

and K ¼ C
2
þ Dj/j

e � e
2
. The above smoothed Heaviside functions are

symmetric to / = 0 returning a volume fraction of 0.5. In this paper, for a given fluid or a solid body, all the
cells can be classified into three types: cells with volume fraction larger than 0.5 are normal cells, cells with
volume fraction less than 0.5 but non-zero are small cells, and otherwise they are empty cells. Note that a nor-
mal cell for a fluid or a solid body corresponding to / > 0 is also a small or empty cell for the fluid or solid
body corresponding to / < 0 and vice versa. It is noted that there are other alternative but more involved ways
to calculate volume fractions according to cell-face apertures [6]. In this paper, the above simple approach is
preferred for its simplicity and easy implementation. As will be shown in Section 7, for a wide range of test
cases it is sufficient to produce very satisfactory results.
4. A mixing procedure

In the present method, the conservative quantities in all normal cells, small cells and newly created or van-
ished empty cells are updated by either Eq. (9) or (8). For a small or empty cell, a stable fluid state may not be
obtained based on the time step calculated according to the full grid size CFL condition. Therefore, it is sug-
gested that the fluid in those cells should be mixed with that of their neighboring cells. As the targeted neigh-
boring cells are preferred to be normal cells, the mixing direction is chosen just opposite to that of the
extending equation (14). Similarly, the targeted cells are determined from the level set normal direction. Sup-
pose cell (i, j) is a small cell, as shown in Fig. 3, for the fluid corresponding to / > 0, the targeted cell in the x

direction is chosen as cell (i + 1,j) if Nx
i;j > 0 otherwise cell (i � 1, j). The targeted cell in the y direction is
( )i-1,j+1

( )i-1,j

( )i,j+1

( )i,j

N i,j

N i,j

x

Ni,j

y

Ta rget cell
in the y direction

Target cell
in the x direction

Small cell

Fig. 3. The target cells for a small cell of fluid corresponding to / > 0.
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chosen as cell (i, j + 1) if N y
i;j > 0 otherwise cell (i, j � 1). For the fluid associated with / < 0, the corresponding

opposite targeted cells are chosen. The changes of the conservative quantities in the x and y directions for the
small cells and the targeted cells are calculated by
Mx
i;j ¼ �Mx

xtrg
¼

bx
i;j

ai;j þ axtrg

ðaxtrg UxtrgÞai;j � ðai;jUi;jÞaxtrg

� �
;

My
i;j ¼ �My

ytrg
¼

by
i;j

ai;j þ aytrg

ðaytrg
Uytrg
Þai;j � ðai;jUi;jÞaytrg

h i
;

ð19Þ
where the subscripts xtrg and ytrg are the indices of targeted cells in the x and y directions, respectively. Note that
conservation is maintained since the conservative quantities a small cell obtained from a target cell corresponds
to a loss of the target cell. The terms bx

i;j and by
i;j are the fractions of mixing in the respective x and y directions

and satisfy bx
i;j þ by

i;j ¼ 1. A simple and robust choice is to set the fraction to 1 for the direction with larger nor-
mal direction component, that is, maxðjNx

i;jj; jN
y
i;jjÞ. One can also choose another smoother but slightly dissipa-

tive form by defining x-direction mixing fraction as bx ¼ jNx
i;jj

2 and y-direction mixing fraction with by ¼ jNy
i;jj

2.
According to our numerical experiences the former gives better results for complex static boundary problems
and the latter seems better suited for multi-fluid problems and complex boundary problems with moving
bodies. Note that other ways to define mixing fractions are possible. It is even possible to consider the corre-
sponding cell in the diagonal direction (for example, the cell (i � 1,j + 1) in Fig. 3) as a target cell by introducing
a new mixing fraction bxy

i;j with relation bx
i;j þ bxy

i;j þ by
i;j ¼ 1 and inserting a new mixing term into Eq. (3).

After the (mixing) changes are calculated the conservative quantities for one fluid in the near interface cells
are updated by
anþ1
i;j Unþ1

i;j ¼ anþ1
i;j Unþ1

i;j

� ��
þ
X

k

Mx þ
X

l

My ; ð20Þ
where ðanþ1
i;j Unþ1

i;j Þ
� are the conservative quantities at time step n + 1 before mixing. Here, the second and third

terms on the right-hand side are the summations taken for all the mixing operations in the x and y directions,
respectively. Actually, the indices k and l in Eq. (20) need not be determined. As the exchanges quantities at
every mixing operations of Eq. (19) is accumulated for every small and target cells, one need only update these
accumulated quantities once by Eq. (20) for all cells in near interface region. Easy to find that only those cells
with non-vanishing exchanged quantities are effected. To avoid possible instability, only for the normal cells
the fluid states are updated from cell-averaged conservative quantities. For the other cells, the corresponding
fluid states are updated by the extending equation (14) if needed. Note that the present mixing procedure treats
vanished and newly created empty cell automatically. For the former case, the residual conservative quantities
are all transported to target cells and, for the latter case all the conservative quantities in a newly created small
cell are transported from its target cells.

5. Interface exchanges

To obtain the momentum and energy exchanges across the interface, the proposed Riemann problems asso-
ciated with interface interactions are solved on the grid points within near interface region band along the
interface normal direction. With Eq. (3), for the interactions between fluid and a complex boundary the inter-
face velocity is determined from a given prescribed or inertially coupled solid body velocity vI = (uI,vI) by
vI ¼ ðvrg �NÞN: ð21Þ

For problems with only weak or moderate shocks and expanding waves, simple non-iterative approximate

Riemann solvers [44] are sufficient for reasonable results, otherwise more accurate solvers are needed. In this
paper, the interface condition is obtained by the interface interaction method of Hu and Khoo [20] without
modification.

After the interface interaction has been solved the interface pressure pI and the normal velocity vI ” (uI,vI)
are obtained. Hence, for the fluid corresponding to / > 0, the momentum and energy transferred to it are
X̂PðDCÞ ¼ pIDCNI and X̂ EðDCÞ ¼ pIDCNI � vI; ð22Þ



( )i+1,j

i,j

( )i,j( )i-1,j

( )i,j-1
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A
i-

1/
2,

j A =0i ,j+1/2N i,j
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Fig. 4. Schematic of conservative discretization for a cut cell.
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respectively. Here DC and NI are the interface segment length or area and normal direction, respectively.
X̂P ¼ ðX̂ P

x ; X̂
P
y Þ stands for the transferred momentum in the respective x and y directions and X̂ E stands for

the transferred energy. In this paper, a two-dimensional approximation of Eq. (22) is used as
X̂ P
x ðDCi;jÞ ¼ pIðAiþ1=2;j � Ai�1=2;jÞDx;

X̂ P
y ðDCi;jÞ ¼ pIðAi;jþ1=2 � Ai;j�1=2ÞDy;

ð23Þ
and
X̂ EðDCi;jÞ ¼ uIX̂ P
x ðDCi;jÞ þ vIX̂ P

y ðDCi;jÞ: ð24Þ
As shown in Fig. 4, the normalized interface segment length in the cell is approximated as
DCi;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAiþ1=2;j � Ai�1=2;jÞ2 þ ðAi;jþ1=2 � Ai;j�1=2Þ2

q
: ð25Þ
To enforce conservation the interface normal direction NI in Eq. (22) is approximated with the cell-face aper-
ture differences. Strictly, NI here is not the same as the level set normal direction at the grid point Ni,j (see Fig. 4)
which is also used to approximate the interface direction when solving for the interface condition for the same
cell. The latter is calculated by a standard central difference from the grid point level set values and is also used
to calculate cell volume fractions, extending quantities, and for mixing small cells. This apparent inconsistency
can be corrected by replacing the level set normal direction with the former at these grid points. However, as
both formulas are approximations with the same order, these slight differences have almost no effect on the re-
sults. Note that for the fluid corresponding to / < 0 the transferred quantities have opposite sign to that of Eqs.
(23) and (24). If the interface separates two fluids the momentum and energy transferred between the two fluids
have the same values but opposite sign and therefore satisfy the overall conservation property.

6. Implementation

A general procedure of the conservative interface method can be summarized as follows:

1. Given the cell-averaged density of conservative quantities Un and fluid states for all grid points within nor-
mal cells, extend the fluid states to the grid points corresponding to the small or empty cells in near interface
region on the other side of the interface via Eq. (14).
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2. Solve the interface conditions on the grid points in the near interface region with the interface interaction
method of Hu and Khoo [20], and calculate the momentum and energy exchanges across the interface with
Eqs. (23) and (24).

3. Proceed to the next time step and compute the unmixed conservative quantities (an+1Un+1)* in all full cells
and the cells in near interface region via Eq. (8).

4. Calculate the level sets /n+1 in the near interface region for the new time step via Eq. (12) with the proce-
dure outlined in [20] which update the level set with interface velocity rather than the fluid velocity.

5. Re-initialize the level sets for the entire domain except the nearest region of the interface, usually the first
nearest cell-layer, via Eq. (13) (details can be found in [20]).

6. From /n+1 calculate the cell-face aperture with Eq. (16), the level-set normal direction with standard central
differences and volume fraction an+1 in the near interface region by Eqs. (17) or (18).

7. Invoke the mixing procedure for the small cells and newly created or vanished empty cells with Eqs. (19)
and (20) to obtain an+1Un+1 from (an+1Un+1)*.

8. Update the cell-averaged density of conservative quantities Un+1 and fluid states for all grid points within
normal cells.

For multi-fluid problems, except steps 4–6, all steps are calculated separately for each fluid. For complex
static boundary problems the steps 5 and 6 may not be necessary. If the solid body associated with the complex
geometry moves with a prescribed velocity vrg(t), the level set moves with this prescribed solid body velocity. In
the case that the solid body moves by inertial coupling the solid body velocity is updated from the total
momentum variation. According to Eq. (4), the average acceleration in one time step is
arg ¼
1

mrg

X
i;j

X̂PðDCi;jÞ ð26Þ
and the velocity of the solid body after one time step can be obtained from
vnþ1
rg ¼ vn

rg þ argDt: ð27Þ
For higher order time accuracy a Runge–Kutta time integration can be used. In each Runge–Kutta sub-step
all the above steps are invoked once, except for the re-initialization step 5 which is done only once after the last
sub-step. Currently, only two-dimensional problems are considered. However, the extension of the present
method to three dimensions is fairly straightforward. The only more evolved work is the calculation of cell
face apertures and the approximate form of the interface surface patch DC for a three-dimensional cut cell.

7. Numerical examples

The following numerical examples are provided to illustrate the potential of the present interface method.
For all test cases, one-phase calculations are carried out with a fifth-order WENO-LF [24] and a third-order
TVD Runge–Kutta scheme [41]. For one-dimensional examples, the number of grid points is 200 and the ref-
erenced exact solution, if exists, is sampled on 1000 grid points. In the two-dimensional examples, if not men-
tioned otherwise, the upper and lower boundaries are imposed with reflecting-wall boundary condition and
the left and the right boundaries imposed with outflow boundary condition with constant extrapolation.
All the computations are carried out with the CFL number of 0.6.

7.1. Gas–gas interaction (I)

Case I-A: We consider a gas–gas interaction problem with the following initial conditions
ðq; u; p; cÞ ¼
ð1; 0:5 sin½pð1� 0:5xÞ�; 1; 1:4Þ if x < 0:5;

ð1; 0:5 sin½pð1� 0:5xÞ�; 1; 1:8Þ if x > 0:5

�
ð28Þ
and reflecting wall boundary condition applied at both x = 0 and x = 1. The case is computed up to time t = 1.
We examine the numerical solutions with the reference ‘‘exact’’ solution computed with 1600 grid points.
Fig. 5 shows the calculated velocity and density profiles at time t = 0,0.25,0.75 and 1. At the early stage of
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Fig. 5. Gas–gas interaction: Case I-A.
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interaction the flow, as shown in Figs. 5b and c, is continuous with primarily only expansion and compression
waves transmitted across the interface. Later the flow depicts the presence of shock discontinuities, after the
two compression waves have been reflected from both ends and interact with the interface and with each other
(see Figs. 5c and d). These shock waves pass through the interface at about t = 0.64 and 0.80, respectively. One
can observe that the computed results are in good agreement with the ‘‘exact’’ solution. Resolution studies are
carried out to measure the numerical convergence rate of the method. For different resolutions, Fig. 6 gives the
variations of total entropy of the left medium sl ¼

P
ie

l
ia

l
i , where el

i and al
i are the entropy and the volume

fraction of the left medium in cell i, respectively, and of total entropy sT ¼
P

ieiai, where ei and ai are the en-
tropy and volume fraction of the left or right medium in cell i, respectively. We measure the entropy errors
Es = |st � sexact|/sexact at t = 0.2, 0.64 and 0.8 corresponding to the time when the entropy assumes the extreme
value in a continuous flow or when the shock waves pass the interface. The entropy errors El

s and ET
s for the

left and total medium, respectively, and the averaged order of convergence Rc are given in Table 1. One can
find that high-order accurate results are obtained for the continuous flow. However, when there is a shock
wave and especially when the shock wave passes the interface, larger errors are produced with an order of con-
vergence decreasing towards unity.

Case I-B: We consider a well known air–helium shock tube problem with the following initial conditions
ðq; u; p; cÞ ¼
ð1; 0; 1; 1:4Þ if x < 0:5;

ð0:125; 0; 0:1; 1:667Þ if x > 0:5:

�
ð29Þ
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Table 1
Errors and convergence rate for Case I-A

1/h Et¼0:2
s� Et¼0:2

sT Et¼0:64
s� Et¼0:64

sT Et¼0:8
s� Et¼0:8

sT

50 3.7 · 10�4 4.1 · 10�4 5.2 · 10�3 4.9 · 10�3 6.7 · 10�3 5.6 · 10�3

100 2.6 · 10�5 9.2 · 10�5 2.1 · 10�3 2.1 · 10�3 3.1 · 10�3 2.5 · 10�3

200 4.9 · 10�6 2.4 · 10�5 7.1 · 10�4 9.0 · 10�4 1.1 · 10�3 1.1 · 10�3

400 4.0 · 10�7 5.7 · 10�6 1.2 · 10�4 3.5 · 10�4 2.8 · 10�4 4.9 · 10�4

Rc 3.3 2.5 1.8 1.3 1.6 1.2
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Typical computational results at time t = 0.15 are shown in Fig. 7. One can find the calculated results are in
reasonably good agreement with the exact solution. In particular, they have almost identical and correct shock
strength and speed. The interface position is also captured accurately. Note that there are larger density dis-
crepancies near the interface (also seen in the following Case I-C) compared with to the results of Fedkiw et al.
[12] (see their Fig. 8) and of Hu and Khoo [20] (see their Fig. 3). This is because the isobaric fix used in their
works produces better density profiles near interfaces. Similar treatments could also be employed in our meth-
od by modifying the states before computing the interface conditions. However, we prefer not to use the said
fix since it may violate conservation considerably. As shown in Fig. 7d, the calculated interface location sug-
gests better convergence property than that of Fedkiw et al. [12] (see their Figs. 7 and 8), the latter shows that
the interface position appears to be off by one cell for all levels of refinement as conservation at the interface is
not satisfied.

We compute the relative mass and energy variations for each fluid separately during the computation by
V ¼
Pi¼N

i¼0 anUn
i DxPi¼N

i¼0 a0U 0
i Dx

; ð30Þ
where Ui is the cell-averaged mass density or energy density on cell i. The superscripts n and 0 represent the nth
time step and the initial condition, respectively. In a similar way, the total mass and energy variations are
given as
V total ¼
ð
Pi¼N

i¼0 anUn
i Þleft þ ð

Pi¼N
i¼0 anU n

i Þright

h i
Dx

ð
Pi¼N

i¼0 a0U 0
i Þleft þ ð

Pi¼N
i¼0 a0U 0

i Þright

h i
Dx
: ð31Þ
Fig. 8 compares mass and energy variation of each fluid to those obtained by the interface interaction
method of Hu and Khoo [20] (denoted as I-GFM). No conservation error is observed for the current method
as the error is of the order of machine accuracy of 10�14.
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Case I-C: We compute a stiff air–helium shock tube problem, taken from [1,20], where the initial pressure
difference is much larger than that in Case I-B. The initial data are
ðq; u; p; cÞ ¼
ð1; 0; 500; 1:4Þ if x < 0:5;

ð1; 0; 0:2; 1:667Þ if x > 0:5:

�
ð32Þ
The computed results at time t = 0.015 are shown in Fig. 9. There is good agreement with the exact solution.
At the right end of the rarefaction waves on the pressure and velocity profiles, one can observe mild over-
shoots which becomes significant in [1] (see their Fig. 6). Their scheme also produces more numerical viscosity
which leads to stronger smearing of the shock front. It requires a much finer distribution of about 800 grid
points for a comparably sharp shock front . Note that these overshoots are replaced by undershoots in the
results of Hu and Khoo [20] (see their Fig. 4).

Case I-D: 2D air–helium interaction. In this 2-D problem, we compute a Mach 6 air shock wave interacting
with a cylindrical helium bubble. Numerical computations for the same problem can be found in [3] who treat
air and helium as the same fluid to avoid difficulties at the interface. For this case, the initial conditions are
ðq ¼ 1; u ¼ 0; v ¼ 0; p ¼ 1; c ¼ 1:4Þ pre-shocked air;

ðq ¼ 5:268; u ¼ 5:752; v ¼ 0; p ¼ 41:83; c ¼ 1:4Þ post-shocked air;

ðq ¼ 0:138; u ¼ 0; v ¼ 0; p ¼ 1; c ¼ 1:667Þ helium bubble;

/ ¼ �0:025þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:15Þ2 þ y2

q
level set;

8>>>><
>>>>:

ð33Þ
where / 6 0 represents the helium and / > 0 represents the air, depicting a helium bubble of radius 0.025 at
(0,0.15) which is to be impacted by a shock wave initiated at x = 0.1. The computation has been carried out
with three increasing resolutions of Dx = Dy = 5 · 10�3, 2.5 · 10�3 and 1.25 · 10�3.
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Fig. 10 shows the calculated density contours at four selected time instances (Dx = Dy = 1.25 · 10�3). These
results show a fairly good agreement with those of Bagabir and Drikakis (their Fig. 6). The secondary reflected
shock wave and triple-wave configurations are calculated with good resolution as shown in Figs. 10b–d. As
Bagabir and Drikakis’s computational model does not treat interfaces, their bubble and jet shapes are smeared
and hard to identify especially after the transmitted shock wave has passed the bubble. In the present calcu-
lation these shape changes are accurately captured, including the strong instabilities at the interface which
even produce isolated air droplets in the helium bubble (see Figs. 10b and c). Also well represented is the inter-
face after the jet collides with the downstream bubble surface which evolves to produce small separated helium
pockets in the background air medium (see Fig. 10d). Another feature of the present method is that the com-
plex topological changes is treated rather naturally without difficulty. The interface at three selected time
instances is shown in Fig. 11a. It is observed that the helium bubble evolves into very complex geometries with
many separated parts. In the present model, when the separated droplet/pocket becomes smaller than the grid
size, the unresolved material is automatically discarded as the re-initialization procedure ignores details smal-
ler than the grid size and reconstructs the new level sets from the resolved region. These are further shown in
Fig. 11b which suggests the deleting of unresolved helium by a series of stair-step-like changes of total helium
mass. Note that these mass changes happen long time after the first topological changes (at about
t = 1.1 · 10�2) suggesting that topological changes do not violate the conservation property of the current
method. Fig. 11c shows the total force acting on the upper-half of the helium bubble. It is observed that sec-
ond order or super-linear convergence for the peak forces before the first topological change at about
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t = 1.1 · 10�2. After the topological changes, it is hard to evaluate the convergence rate as the interface-line
length is strongly dependent on interface instabilities, which suggest no simple dependency on grid sizes.
Fig. 11d compares the jet and upstream bubble surface trajectories calculated with different grid sizes. A sec-
ond-order convergence rate is obtained by computing total relative errors between successive grid sizes.

7.2. Gas–water interaction (II)

Case II-A: Gas–water shock tube problem. This problem is taken from [20]. A real gas equation of state is
used for the gas and Tait’s equation of state for the water medium. The initial conditions are given as
ðq; u; p; cÞ ¼
ð0:01; 0; 1000; 2Þ if x < 0:5;

ð1; 0; 1; 7:15Þ if x > 0:5:

�
ð34Þ
In this problem the high pressure gas expands slowly comparing to the transmitted and reflected wave front
speeds. Fig. 12 shows the computed results at time t = 0.0008. Note that the present results indicate slightly
more accurate solutions for the rarefaction wave in gas medium and the transmitted shock wave in water than
those of Hu and Khoo [20]; the latter produces a slight overshot at the rarefaction wave and small differences
in the velocity at the water–gas interface (see their Fig. 12).

Case II-B: Shock impacting on an air–water interface. We here consider the initial conditions
ðq; u; p; cÞ ¼
ð1:037578; 6:0151; 1000; 7:15Þ if x < 0:7;

ð0:001; 0; 1; 1:4Þ if x > 0:7:

�
ð35Þ
This is an air bubble collapse problem in one dimension. While the gas bubble collapses, the underwater
shock wave impacts at the interface resulting in a weak shock wave transmitted into the air and a very strong
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rarefaction wave reflected back to the water medium. The calculated results at time t = 0.003 are shown in
Fig. 13. One can find that, while in overall agreement with the exact solution, the results produced with
the present method predict a more accurate pressure profile than that calculated with the interface interaction
method of Hu and Khoo [20] (denoted as I-GFM in Fig. 13). Note that the I-GFM is also a fairly robust
method. As the pressure profile in Fig. 13a is plotted in logarithm scale, the oscillation produced by
I-GFM is still very limited in magnitude and does not cause any stability problem. Our numerical experiments
suggest that I-GFM still able to produce reasonable results although not being exactly conservative.

Case II-C: Underwater explosion. We consider an underwater explosion problem [45] in which the explosion
products are modeled as a high pressure underwater gas bubble. The growth and collapse of an underwater
gas bubble can be described by the one-dimensional spherically symmetric conservation laws [26] in which the
spherical effects are taken into account as source terms. There are a number of previous simulations of this
problem via arbitrary Lagrangian–Eulerian (ALE) methods [29,37,42] or an Eulerian method with a simplified
model neglecting the dynamics of gas bubble and shock interface interactions [25]. This problem is a big chal-
lenge for any Eulerian multi-fluid method since there are very large gas bubble volume changes at a very low
interface speeds which here to be computed for a very long physical time. Therefore, a very good conservation
property is crucial to predict this phenomenon correctly.

The initial conditions for this problem are
y

ðq; u; p; cÞ ¼
ð1:63; 0; 83810; 1:4Þ if 0 < x < 0:16;

ð1:025; 0; 10; 5:5Þ if 400 > x > 0:16

�
ð36Þ
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and which are taken from [37]. The reflecting wall boundary condition is used for the left boundary. We do not
implement a boundary condition to the right boundary as the disturbance does not arrive there in the calcu-
lations. As in [37] a stiff gas equation of state is used for water, i.e. (c � 1)qe = p + cp0 where c = 5.5 and
p0 = 4921.15. To obtain a mesh converged bubble oscillation period the calculation is performed with grid
sizes of Dx = 0.2, 0.1, 0.05, 0.025 and 0.0125, corresponding to 0.8, 1.6, 3.2, 6.4 and 12.8 grid points (compu-
tational cells) for the initial gas bubble of 16 cm radius.

Fig. 14 shows the calculated bubble radius and interface pressure history with different grid sizes, both of
which suggest a second-order convergence rate. The converged results, such as a bubble oscillation period of
about 0.2 s and a maximum bubble radius at about 3 m at time t = 0.1 ms, are in good agreement with pre-
vious ALE calculation [37]. Our results also show pressure oscillations at the interface which has been found in
previous works [29,30,45]. Note that the current calculations capture correct physics with much fewer grid
point for the gas bubble than previous ALE simulations. Further calculations (not shown here) suggest that
when Tait’s equation is used for the water medium, almost identical results are obtained with a slightly larger
oscillation period. In the present computations the so-called ‘‘jaggedness’’ (or oscillatory behavior with limited
magnitude) phenomena with complex secondary, tertiary and more successive shock waves produced by inter-
face interactions can be captured clearly when the gas bubble is described with similarly high numerical
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resolution as previous ALE simulations. Fig. 15 depicts the ‘‘jaggedness’’ phenomena at the early stage of the
interaction when approximately 600 grid points are used for the gas bubble. Again, these results are in very
good agreements with previous ALE simulations [29,37,42].

Case II-D: Collapse of 2D air bubbles in water. We consider the interactions between two neighboring 2D
bubbles and a strong shock wave. This problem has been previously simulated by Hankin [17]: two, 6 and
3 mm diameter cylindrical air bubbles in water are impacted by a 1.6 GPa shock wave. According to Hankin
[17], the schematic of the problem is given in Fig. 16a which shows a 15 · 15 mm computational domain. The
initial data are
of Computational Phy
ðq ¼ 1; u ¼ 0; v ¼ 0; p ¼ 1:013; c ¼ 7:15Þ pre-shocked water;

ðq ¼ 1:226; u ¼ 54:28; v ¼ 0; p ¼ 16000; c ¼ 7:15Þ post-shocked water;

ðq ¼ 1:2� 10�3; u ¼ 0; v ¼ 0; p ¼ 1; c ¼ 1:4Þ air bubble;

/ ¼ �3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 7:5Þ2 þ ðy � 8:5Þ2

q
level set for y > �xþ 11:5;

/ ¼ �1:5þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 3:75Þ2 þ ðy � 5Þ2

q
level set for the rest region:

8>>>>>>>><
>>>>>>>>:

ð37Þ
Here / 6 0 represents the air and / > 0 represents the water. Initially, the shock wave just reaches the small air
bubble. 150 · 150 grid points, approximately the same as in [17], are used for the computations. Figs. 16b–d
show the typical density contours at t = 0.18 (1.8 ls), t = 0.34 (3.4 ls) and t = 0.46 (4.6 ls) which depict good
agreement with those of Hankin [17] (their Fig. 5). One can find that, although even slightly less grid points
have been used in the present calculation the shapes of the bubbles are captured in much more detail. Note
that when the small bubble is split by jets and compressed to a scale smaller than the grid size it vanishes
and affects the rest flow field no more. Furthermore, after the small bubble has collapsed and vanished the
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explosion waves originating from these collapse points (see Fig. 16c) lead to two cavitation regions. Since the
present model does not include any cavitation model the computation is stopped when in these regions even-
tually a negative sound speed arises.
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7.3. Complex boundary problems (III)

Case III-A: Moving wall problem. We consider a gas confined between two reflecting walls at xl = 0 and
xr = 0.5 + urt with constant ur = 0.5. The initial conditions are
½qðxÞ; uðxÞ; pðxÞ� ¼ ½1þ 0:2 cosðp� 2pxÞ; 2urð1� xÞ; qðxÞ1:4� ð38Þ

in which the entropy s(x) = 1. This problem is taken from [13]. We examine the numerical solutions and com-
paring to the reference ‘‘exact’’ solution computed with 1600 grid points. We calculate this case to time t = 0.6.
Fig. 17 presents the results at time t = 0,0.2, 0.4 and 0.6. One can observe that the computed results are in
quite good agreement with the ‘‘exact’’ solution. Note that the grid points occupied by the wall are filled with
zeros. Resolution studies are also carried out to measure the numerical convergence rate of the method. Since
the analytic solution is smooth the entropy stays constant throughout. We examine the total entropy error
errttl calculated by errttl ¼

P
jjsfinal

j � 1jafinal
j =

P
ja

0
j and the entropy error on the moving boundary given by

errbry ¼ jsfinal
I � 1j, respectively, at the final time. Table 2 shows the an error analysis of the above errors, which

gives a second-order convergence rate for the total error and a slightly better than linear convergence rate for
the boundary error. These results are in good agreement with Forrer and Berger [13] and Arienti et al. [2] using
non-conservative methods.

Case III-B: Shock diffraction on an airfoil. We consider a Mach 1.5 shock wave diffraction on a NACA0018
airfoil with +30� angle of attack. Numerical computations for the similar problem with Cartesian grid can be
found in [47] with the grid intersection method and in [39] with an immersed boundary method. The present set-
up of the problem is the same as in [47] where a 1.8 · 2 computational domain is employed. The initial data are
ðq ¼ 1:4; u ¼ 0; v ¼ 0; p ¼ 1:0; c ¼ 1:4Þ pre-shocked air;

ðq ¼ 2:607; u ¼ 0:694; v ¼ 0; p ¼ 2:4583; c ¼ 1:4Þ post-shocked air:

�
ð39Þ
t=0.8ms
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The level set is built from a polyline consisting of 200 control points [21]. Fig. 18a shows the computed results
on a 360 · 400 grid at time t = 0.64 which suggests a good agreement with the shock structure from the exper-
imental results of Mandella and Bershader [31] at an approximately similar time. Compared with the results of
Ripley et al. [39] obtained with a 500 · 500 grid, the present method shows higher order accuracy by which a
much sharper shock wave front and refined flow structures near the airfoil head and tip are produced. Note
that the discontinuities near the solid body are sharply predicted which eliminates the problems associated
with artificial numerical boundary layer found in [38,47]. By imposing the free stream velocity and density with
the post-shock values we calculate the lift and drag coefficients by Cl ¼ F y

1
2
q1u2

1L
, Cd ¼ F x

1
2
q1u2

1L
where Fx and Fy are

the total momentum exchange rate integrated along the boundary in the x and y directions, respectively, and L

is the airfoil chord length. The calculated lift and drag coefficients with different grid sizes are shown in
 y
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Fig. 18b which suggest about second-order convergence rate for the peak lift coefficient and linear convergence
for the drag coefficient.

Case III-C: The liftoff of a cylinder by a shock wave. This example of a flow with complex moving boundary
is taken from [11] on the liftoff of a cylinder by a shock wave. A rigid light-weight cylinder, initially resting on
the lower wall of a two-dimensional channel, is driven and lifted upwards by a Mach 3 shock wave. The prob-
lem has also been simulated with non-conservative methods by Forrer and Berger [13] and by Arienti et al. [2]
which implement the moving boundary condition with mirror or injection operations. The initial data for this
problem are
ðq ¼ 1; u ¼ 0; v ¼ 0; p ¼ 1Þ pre-shocked air;

ðq ¼ 3:857; u ¼ 2:629; v ¼ 0; p ¼ 10:333Þ post-shocked air;

/ ¼ �0:05þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:15Þ2 þ ðy � 0:05Þ2

q
level set:

8>><
>>:

ð40Þ
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Here, / 6 0 represents the cylinder with a radius of 0.05 and density of 7.6 and / > 0 represents the air in
the channel. The computational domain is 1.0 · 0.15, for which the left inlet boundary assumes the post-
shock parameters. Different grid sizes of Dx = Dy = 2.5 · 10�3, 1.25 · 10�3 and 6.25 · 10�4 are used.
Fig. 19 shows the pressure contours at three different times t = 0.0, 0.014 and 0.0255, which correspond
to times t = 0, 500 and 910 of Falcovitz et al. [11], respectively. Our results show that at time t = 0.028
(t = 1000 in [11]) the cylinder has already left the top boundary of the domain. These results agree with For-
rer and Berger [13] and Arienti et al. [2]. A strong vortex appears under the cylinder in the results of Forrer
and Berger [13] (see their Fig. 5). However, as shown in Figs. 19b and c, this vortex cannot been found here.
The same phenomenon is found after we have examined our low resolution results (not shown here) and the
results in [2] (their Fig. 19). One possible reason for this discrepancy may be caused by the space–time split-
ting scheme employed in [13]. The different treatment of the tangential direction velocities for the ghost
nodes may effects the numerical dissipation considerably. In the present results, the measured cylinder cen-
ters at t = 0.0255 with increasing resolution are (0.659, 0.132), (0.649,0.145) and (0.641, 0.147), corresponding
grid sizes are Dx = Dy = 2.5 · 10�3, 1.25 · 10�3 and 6.25 · 10�4. There results imply a super-linear conver-
gence rate, slightly better than that of Arienti et al. [2]. This is perhaps to be expected since the present con-
servative interface method may improve the solution especially when the calculation is carried out on long
time scales.
8. Concluding remarks

In this paper, we have developed a conservative interface method suitable for both multi-fluid problems and
complex boundary problems. The conservation property removes or reduces any conservative associated
errors especially when there are strong or long physical time scale interactions across the interface. As the
method is constructed based on a standard Cartesian finite volume method and level set technique, it main-
tains the simplicity of GFM-like methods for implementation and handles topological changes naturally. The
present method also offers a fairly simple way of implementation in multi-dimension and for multi-level time
integrations without space–time splitting. A number of numerical examples in one dimension are studied with
comparisons to exact solutions while two-dimensional problems are calculated and compared to experiments
and results of previous works. The obtained results suggest that the present method exhibits a large degree of
robustness and accuracy with quite good convergence properties. As the different types of interface problems
in this work are treated with the same approach our method may provide a way towards universal methods for
interface problems.
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