Available online at www.sciencedirect.com

’ : JOURNAL OF
ScienceDirect COMPUTATIONAL
PHYSICS

ELSEVIER Journal of Computational Physics 219 (2006) 553-578

www.elsevier.com/locate/jcp

A conservative interface method for compressible flows

X.Y. Hu **, B.C. Khoo °, N.A. Adams ?, F.L. Huang ©

& Lehrstuhl fiir Aerodynamik, Technische Universitit Miinchen, 85747 Garching, Germany
® Department of Mechanical Engineering, National University of Singapore, 117576 Singapore, Singapore
¢ National Key Laboratory for Prevention and Control of Explosive Disasters, Beijing Institute of Technology, 100080 Beijing, China

Received 21 October 2005; received in revised form 22 February 2006; accepted 3 April 2006
Available online 19 May 2006

Abstract

In this work, we present a conservative interface method for both multi-fluid and complex boundary problems, in which
the standard finite volume scheme on Cartesian grids is modified by considering computational cells being cut by interface.
While the discretized governing equations are updated conservatively, the method treats the topological changes naturally
by combining interface description and geometric operations with a level set technique. Extensive tests in 1D are carried
out, and 2D examples suggest that the present scheme is able to handle multi-fluid and complex (static or moving) bound-
ary problems in a straightforward way with good robustness and accuracy.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Various numerical methods have been developed to simulate and study the dynamics of compressible flows
at high speeds. In all cases, a significant difficulty encountered with these numerical computations is the treat-
ment of a material interface. In general, there are two main types of interface related problems: one is the
multi-fluid problem in which the interface separates interacting different fluids; the other is the complex
boundary problem in which the interface defines a complex, static or moving, boundary between the fluid
and a rigid solid wall or a body.

Usually, the interfaces for these two types of problems are treated in quite different ways. For a multi-fluid
problem, the interface is often defined on a Cartesian grid as a transition region with a steep gradient. Some
numerical methods using this ‘smeared’ interface representation are the volume of fluid (VOF) method
[1,18,49] or constrained interpolation profile (CIP) method [46]. For a complex boundary problem, the inter-
face is often defined as a non-smeared boundary of a structured body-fitted grid [4], or an unstructured grid
[23,28,36]. On the other hand, there are still alternative approaches in which the above two types of interfaces

* Corresponding author. Tel.: +49 89 289 16152; fax: +49 89 289 16139.
E-mail address: xiangyu.hu@aer.mw.tum.de (X.Y. Hu).

0021-9991/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcp.2006.04.001


mailto:xiangyu.hu@aer.mw.tum.de

554 X.Y. Hu et al. | Journal of Computational Physics 219 (2006) 553-578

are both treated on a Cartesian grid. One approach is to reconstruct a “smeared”” complex boundary with the
VOF technique [19]. The other approach is to track both multi-fluid interfaces and complex boundaries with a
non-smearing representation. Glimm et al. [15] track the multi-fluid interface as a non-smeared internal mov-
ing boundary with a grid intersection technique. Similar geometric treatments of the boundary are also devel-
oped for Cartesian approaches to complex boundary problems [5,7,38,47,48]. Even though these mentioned
alternative approaches are conceptually simple there are two major limitations: one is that defining and track-
ing of the interface require rather complicated procedures with the grid intersection technique, especially in the
cases of large topology variations; the other is the lack of conservative properties, which usually leads to low
accuracy near the interface, especially when strong or long time scale interface interactions are involved.
The level set technique [10,34,43] is a reasonably easy way to define and track a non-smeared multi-fluid
interface. To deal with the issue of conservation, the original works of Berger and LeVque [5] and Quirk
[38] on complex boundary problems do not treat the interface specifically but use a complex adaptive mesh
refinement strategy to increase accuracy near the boundary. Other approaches, e.g. GFM (ghost fluid method)
and related methods [8,12,20,27] employ special internal boundary conditions at the multi-fluid interface in the
attempt to correct or reduced conservation errors. Fairly similar procedures can also be implemented for com-
plex boundary problems [2,13,14,21]. While these approaches have led to promising results they possess
strictly only a first-order convergence rate for the conservation errors. To handle the stability difficulty of a
conservative discretization with the VOF method, Colella [9] and Miller and Colella [32] introduced a redis-
tribution approach for multi-fluid problems in which conservation defects resulting from non-conservative
updates are redistributed onto neighboring cells according to mass weighting. Falcovitz et al. [11] satisfy con-
servation near a complex moving boundary by a Strang-type operator splitting. Glimm et al. [16] introduced a
conservative method based on a grid intersection technique, in which each small-size cut cell is merged with
one of its neighboring cells, for multi-fluid flows with the assumption of no topological change in the solution.
In this paper, we propose a Cartesian interface method suitable for both multi-fluid and complex boundary
problems. We use a standard finite volume scheme for the far interface region which is slightly modified for the
near interface region. Unlike Miller and Colella [32], the present method updates the discretized governing
equations fully conservative for both fluids individually and for interface exchanges in multi-fluid problems.
Small cut cells are treated with a mixing procedure which, however, is different from the approaches found in
[32,16]. As our mixing procedure is separated from the flux updating of conservative variables, it is easy to
implement, especially when complex geometries are considered. Also, unlike the work of Falcovitz et al.
[11], the present method offers a fairly simple implementation in multi-dimension and multi-level time integra-
tions without space-time splitting. The assumption of non-topological change as in [16] is not necessary in our
formulation. Furthermore, as the level set technique is used for the interface description and geometric oper-
ations, the method maintains the simplicity of GFM-like methods. Indeed, in our implementation, we use the
interface interaction method [20] to obtain the interface conditions for the near interface grid points. However,
these interface interactions are not employed for defining the ghost node states but for the direct calculation of
momentum and energy exchanges across the interface. Accordingly, the ghost node is filled only for the stencil
interpolation rather than for implementing the internal boundary condition common for GFM-like methods.

2. Overview of the method

Assuming the fluid is inviscid and compressible the governing equation of the flow can be written as a sys-
tem of conservation laws

a—U+V-F:0 on (, (1)
ot
where U is the density of the conserved quantities of mass, momentum and total energy, and F represents the
corresponding flux functions. When an interface I'(7) separates the domain Q into two sub-domains Q'(7) and
Q%(1), as for a multi-fluid problem, the evolution of the interface is determined by the interface condition given
by a two-material Riemann problem

A(Upuiar, Upuiaz) = 0 on I'(z). (2)
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When a complex boundary problem is considered, the evolution of the interface is determined by the bound-
ary velocity v,,. The pressure on the interface is then determined by the one-sided Riemann problem

,%(Uﬂuid,vrg) =0 on F(l) (3)

The boundary velocity can be prescribed. If the associated rigid solid body moves according to an inertial cou-
pling the acceleration a.,() can be calculated by

a,(1) = ! /r(t)p ds (4)

mg

in which the integration is carried out over the entire interface, and m,, is the solid body mass.

Following Miller and Colella [32], we consider Eq. (1) for the fluid occupying the sub-domain Q' on a two-
dimensional Cartesian grid with grid spacings Ax and Ay. A finite volume discretization can be obtained from
integrating Eq. (1) over the space—time volume 4, N Q'(7) of a computational cell (i,j) occupied by the fluid

n+1 U
/ dt/ dxdy(—+V-F>:O, (5)
n 4;00' (1) ot

where 4;; = AxAy is the cell volume. 4;N Q'(1) can be represented by o; At)Ax Ay where o; (1) is the time
dependent volume fraction of the considered fluid and satisfying 1 > o > 0. By an application of Gauss’s the-
orem, one obtains

n+1 n+1
/ dt/ dxdya—+ dt/ drdyF-n=0, (6)
A ﬁQ 0A;;NI (1)

where 04, are the four cell faces intersecting orthogonally with the grid at four locations (x; + Ax/2,y;),
(x5,y; T Ap/2), (x; — Ax/2,p;) and (x;y; — Ay/2). Denoting the interface location as I'(7), as shown in Fig. I,
04, N I'(7) can be represented by two parts: one is the combination of the four segments of the cell faces being
cut by the interface, which can be written in the form of 4112 (H)A y, A; jr1/2(0)Ax, A;_ 12 (H)Ay and A; ;1 /2(H)Ax
where 1 > A4 = 0 is the aperture; the other one is the segment of the interface AI'; () inside of the cell (i,j).
Hence, Eq. (6) can be rewritten as

I In+1
(L,j+1)
A:./+//2 N
|
A
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Fig. 1. Schematic of conservative discretization for a cut cell.
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(aﬁleﬁjl — o, U, At—/ dt 1+1/2]( )Fz+l/2,j _Aifl/Z,j(t)Fi—l/Z‘j:I

n+1
o Aly (A o OF =iy sOF] + [ X))
where At is the time step size. o; (¢)U;; and U, ; are the conservative quantities in the cut cell and the cell-aver-
aged density of conservative quantities of the considered fluid, respectively. F is the average cell-face flux and
X[F (#)] is the average momentum and energy exchange across the interface segment determined by the inter-
face interaction of Eq. (2) or (3). With explicit first-order forward time difference, the above equation can be
approximated as

At - At - .
n n+1 n n
o U = o U Ax—AyX(AF ) T {Af—l/z‘jF i-1/2j — Aiv12,Fin 2

At . .
+ A Aijro K12 — Ai,j+1/2FiJ+l/2} . (8)

Note that all the terms on the right-hand side are evaluated at time step n. For full cells which are not cut by an
interface, volume fractions and apertures become unity and the corresponding interface segments AI'; ; vanish.
Eq. (8) then simplifies to

At /- . At - .
U?j] =U}, + e (Fifl/Z‘j - Fi+1/2,j) + A_y (Fi‘jfl/z - Fij+1/2> 9)

recovering a standard finite volume scheme on a two-dimensional Cartesian grid. On the other hand, since
being effective only in cutting cells, Eq. (8) can also be viewed as a slight modification of Eq. (9) near the
interface.

It can be found that global conservation for the considered fluid is satisfied by summing Eq. (8) over the
entire domain

Z o U = Z o U+ Z AxA X(ATI';;) + boundary terms, (10)

where the interface-exchange term (second term on right-hand side) vanishes in all full cells. Note that for
two-fluid problems, the evolution of each fluid is computed by solving Eq. (8) where the interface-exchange
term has opposite sign. Therefore, overall conservation can be achieved by summing Eq. (10) for the two
fluids

Z X:cx”“U’“rl Z Z o U! 4 boundary terms. (11)

=12 iy =12 ij

Here, we make the following remarks:

e As standard Cartesian finite volume schemes are used for the discretization of differential operators, the
location of the centroid of a cut cell is always approximated by the location of a grid point. This approach
has been used with much success previously [35,32].

e Whenever the volume fraction of a cut cell becomes small a mixing procedure is applied to avoid an extre-
mely small time step.

e For higher order time integration a Runge—Kutta scheme can be employed while maintaining discrete con-
servation since every Runge—Kutta sub-step can be formulated as Eq. (8).

e The extension of the above formulations to three dimensions is fairly straightforward.

In the remainder of the paper we elaborate on the above ideas and implementations. The description of
interface related issues can be found in Section 3. Our method is based on the level set technique. Besides
the interface advection, re-initialization and state extrapolation follow previous works [12,20]. New methods
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are proposed to calculate the cell-face apertures and volume fractions. In Section 4 a novel but simple and low
dissipation mixing procedure is introduced. In Section 5 the interface interaction terms are derived. In Section
6 the detailed implementation steps are given in the context of applications to multi-fluid and complex bound-
ary problems, and possible extension to three dimensions. Finally, numerical examples in one and two dimen-
sions and brief concluding remarks are given in Sections 7 and 8, respectively.

3. Interface description
3.1. Level set function

We associate the computational domain Q with a signed distance function ¢(x, y, f), that is V|¢p| = 1, called
the level set function [34]. Knowing ¢ we may locate the interface by finding the zero level set of ¢. That is
I'(t) = {x,y:¢(x,y,t) = 0} which divides the entire domain into two sub-domains, each of which corresponds
to a fluid or a solid body, with opposite signs of the level set function ¢. In this paper, the aperture and volume
fraction for a computational cell are defined as A" and o for the fluid region corresponding to ¢ > 0, while
A~ and o for the fluid region corresponding to ¢ <0.

For simple geometries described with lines or circles, the initial level set function can be constructed directly
by using one or more distance functions to the given curves. If more complex interfaces are considered the
initial level set function is difficult to be specified analytically, and usually needs to be constructed numerically
from a set of connected edges or surface patches on vertices. The first step for the construction is to determine
whether a grid point is inside or outside of the interface. Many point classifications, such as the ray intersec-
tion method [22], can be easily implemented. Next, we find a point on the interface having a minimum distance
to the grid point, and designate the minimum distance and the direction to this point as the magnitude of ¢
and its normal direction, respectively.

With the level set initialized at the grid points it can be found that the continuous updating of ¢ is equiv-
alent to the advection of the interface by the equation

¢, + up, +vh, =0, (12)

where u and v are the velocity components for the level sets in the x and y directions, respectively. High-order
schemes [12,40] have been developed to solve Eq. (12). In practice, the level sets are only updated in the near
interface region, which usually includes the first and second nearest cell-layers. For the region far from the
interface the level sets are re-initialized [43] by the equation

b +sen(@) (Vo[ - 1) =0, (13)

where sgn(¢) is a sign function, to maintain the signed distance property of level set function. To allow for
stencil interpolation near the interface in terms of standard finite volume schemes [12] and solving for the
interface conditions on grid points in near interface region [20], the fluid states are extrapolated to the other
side of the interface by the extending equation

q. £N-Vg=0. (14)

Here ¢ is the extended fluid state and N = (N, NV,) is the normal direction of the level set. On may note that +N
is used to extend quantities from sub-domain with ¢ < 0 to sub-domain with ¢ > 0, while —N is used to extend
quantities from sub-domain with ¢ > 0 to sub-domain with ¢ < 0. For a given ¢ the extending equation can be
solved until a steady solution in the near interface region is reached.

3.2. Cell-face apertures
In this paper, the cell-face apertures are calculated according to the level set distribution along the cell face.

On a two-dimensional Cartesian grid, the level set function at the corners of a cell centered at (i,j) is approx-
imated by
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1

¢1+1/2Aj+1/2 = d)l,j + ¢i+1,j + ¢i,j+1 + ¢1+1,j+1 )

(15)

Gij+ Qi+ Qi t i)

o )
1

Bis1j2j-1/2 = 2 () + bivry + bijor + rirymr)
1

¢i—1/2,j+1/2 = Z ( )
1

)

¢i—1/24j—1/2 = Z (¢i,j + ¢i—l,j + ¢i,j—1 + ¢i—l,j—1 .

A sign change of the level-set function along a cell face implies that the cell face is cut by the interface. For
such cells, by assuming a linear distribution of ¢ the cell-face apertures can be calculated as

Ai1jaj = iyrjay  if ¢i+l/24j+1/2 >0 else | — a1,
Aicrpy=aiipy A Qiypnjinpn >0 else 1 —aiipy, (16)
Aijrip =bijyp 1 Qiypjiipn >0 else 1= b,

Ai,j*]/z = bi‘jfl/z if ¢i+l/2,j—1/2 > 0 else 1— bi‘j—]/27
|bis1/2,41/2] [$iv1/2,x122
o 12412 bir1 /22121 [bis1/2 41/2H|bic1 2 21)2]
tion for 4;1/,. If level set does not change sign along a cell face, the aperture is either 1 (positive sign) or 0
(negative sign). Note that the above cell-face apertures, denoted as A", are for the fluid region corresponding

to ¢ > 0. For the fluid corresponding to ¢ < 0, the cell-face apertures are A~ =1 — A",

where a;11/2,; = and b, j11, = Fig. 2 shows the schematic of the calcula-

3.3. Volume fractions

With the standard level set technique [43], the volume fraction o, for the fluid corresponding to ¢ > 0 can
be approximated by a smoothed Heaviside function o, = H(¢, ;, ) Where ¢ 1s a small positive number such as
the grid s1ze The volume fraction o~ for the fluid corresponds to ¢ <0 can be calculated by the relation

=1—0o". A simple form of the smoothed Heaviside function can be written as

<
(@i,j+1)

¢>0
|Gie2sona|

(i-1,j) (in]) (i+1,))
0
/¢<

| Berrm)

b0

(i,j-1) 9

Fig. 2. The calculation of the aperture 4;;/5.
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0 ¢ < —e,
H(pe) =S t+2+Lsin(¥) —e<¢<e, (17)
1 ¢ > e

which depends on the level set values only. By including more information on the level set normal direction a
more accurate calculation for the two-dimensional volume fraction [21] can be given as

0 if A>T, ¢ <0,
Ly Dy +1 2 if > 4>0, ¢<0,
H(¢p,e) =< s+%5D¢ if 4<0, (18)
Ly ipp—14 §f =420 ¢>0,
1 if A>T, ¢ >0
in which D = emin(j, ﬁ) I'=vD>—¢and A =15+2% ¢ The above smoothed Heaviside functions are

symmetric to ¢ = 0 returning a volume fraction of 0.5. In this paper, for a given fluid or a solid body, all the
cells can be classified into three types: cells with volume fraction larger than 0.5 are normal cells, cells with
volume fraction less than 0.5 but non-zero are small cells, and otherwise they are empty cells. Note that a nor-
mal cell for a fluid or a solid body corresponding to ¢ > 0 is also a small or empty cell for the fluid or solid
body corresponding to ¢ < 0 and vice versa. It is noted that there are other alternative but more involved ways
to calculate volume fractions according to cell-face apertures [6]. In this paper, the above simple approach is
preferred for its simplicity and easy implementation. As will be shown in Section 7, for a wide range of test
cases it is sufficient to produce very satisfactory results.

4. A mixing procedure

In the present method, the conservative quantities in all normal cells, small cells and newly created or van-
ished empty cells are updated by either Eq. (9) or (8). For a small or empty cell, a stable fluid state may not be
obtained based on the time step calculated according to the full grid size CFL condition. Therefore, it is sug-
gested that the fluid in those cells should be mixed with that of their neighboring cells. As the targeted neigh-
boring cells are preferred to be normal cells, the mixing direction is chosen just opposite to that of the
extending equation (14). Similarly, the targeted cells are determined from the level set normal direction. Sup-
pose cell (i,/) is a small cell, as shown in Fig. 3, for the fluid corresponding to ¢ > 0, the targeted cell in the x
direction is chosen as cell (i + 1,j) if Nj; > 0 otherwise cell (i — 1,j). The targeted cell in the y direction is

I 9>0
e
G-1,j+1) (i,j+1)
Target cell
//in the y direction
N J /
- Small cell
N,j] //
(-1j) Ni ()
¢=0

Target cell
in the x direction

Fig. 3. The target cells for a small cell of fluid corresponding to ¢ > 0.
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chosen as cell (i,j + 1) if N7, > 0 otherwise cell (i,j — 1). For the fluid associated with ¢ <0, the corresponding
opposite targeted cells are chosen. The changes of the conservative quantities in the x and y directions for the
small cells and the targeted cells are calculated by

B
M, =-M; = m (ot Usy )0ty — (011U ) ot |5
, (19)
5 i.j
M, =-M = %/Jr—]am {(%,-gUy‘,g)O‘f,j - (“i.,fUi.,j)%rg} )

where the subscripts x,; and y,, are the indices of targeted cells in the x and y directions, respectively. Note that
conservation is maintained since the conservative quantities a small cell obtained from a target cell corresponds
to a loss of the target cell. The terms f;; and 5] are the fractions of mixing in the respective x and y directions
and satisfy f3;, + B, = 1. A simple and robust choice is to set the fraction to 1 for the direction with larger nor-
mal direction component, that is, max(|N; |, [N;,]). One can also choose another smoother but slightly dissipa-
tive form by defining x-direction mixing fraction as * = [N} j‘z and y-direction mixing fraction with ' = |N} j|2.
According to our numerical experiences the former gives better results for complex static boundary problems
and the latter seems better suited for multi-fluid problems and complex boundary problems with moving
bodies. Note that other ways to define mixing fractions are possible. It is even possible to consider the corre-
sponding cell in the diagonal direction (for example, the cell (i — 1,/ + 1) in Fig. 3) as a target cell by introducing
a new mixing fraction f; with relation f; + ; + f;; = 1 and inserting a new mixing term into Eq. (3).

After the (mixing) changes are calculated the conservative quantities for one fluid in the near interface cells
are updated by

Ut = (U YoM YWY (20)
k 1

where (o] lUfjl )" are the conservative quantities at time step n + 1 before mixing. Here, the second and third
terms on the right-hand side are the summations taken for all the mixing operations in the x and y directions,
respectively. Actually, the indices & and / in Eq. (20) need not be determined. As the exchanges quantities at
every mixing operations of Eq. (19) is accumulated for every small and target cells, one need only update these
accumulated quantities once by Eq. (20) for all cells in near interface region. Easy to find that only those cells
with non-vanishing exchanged quantities are effected. To avoid possible instability, only for the normal cells
the fluid states are updated from cell-averaged conservative quantities. For the other cells, the corresponding
fluid states are updated by the extending equation (14) if needed. Note that the present mixing procedure treats
vanished and newly created empty cell automatically. For the former case, the residual conservative quantities
are all transported to target cells and, for the latter case all the conservative quantities in a newly created small
cell are transported from its target cells.

5. Interface exchanges

To obtain the momentum and energy exchanges across the interface, the proposed Riemann problems asso-
ciated with interface interactions are solved on the grid points within near interface region band along the
interface normal direction. With Eq. (3), for the interactions between fluid and a complex boundary the inter-
face velocity is determined from a given prescribed or inertially coupled solid body velocity v = (uy,v;) by

vi = (Vg - N)N. (21)

For problems with only weak or moderate shocks and expanding waves, simple non-iterative approximate
Riemann solvers [44] are sufficient for reasonable results, otherwise more accurate solvers are needed. In this
paper, the interface condition is obtained by the interface interaction method of Hu and Khoo [20] without
modification.

After the interface interaction has been solved the interface pressure p; and the normal velocity vy = (uy, vy)
are obtained. Hence, for the fluid corresponding to ¢ > 0, the momentum and energy transferred to it are

XP(AT') = pATN; and XE(AI') = p AN - v, (22)
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(i,j+1)
|, Ai,/+l/2 N
_ |
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AL
] A.,,=0
2 N,,J i+1/2,j
<
(i-1,)) (i) (i+1,))
N,
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A.‘jr//z
/ (l)]'])

$=0

Fig. 4. Schematic of conservative discretization for a cut cell.

respectively. Here AI" and Ny are the interface segment length or area and normal direction, respectively.
XP = (XP,X?) stands for the transferred momentum in the respective x and y directions and X* stands for
the transferred energy. In this paper, a two-dimensional approximation of Eq. (22) is used as

XP(AT)) = pi(Aisi oy — Ai10))Ax,

- (23)
X (AL)) = pi(dijrp — Aijo12) Ay,
and
XP(ALy) = wXY (AT ;) + olXF(AT). (24)
As shown in Fig. 4, the normalized interface segment length in the cell is approximated as
Al = \/(Ai+l/2«,./' — A1)+ Ay = Aija)’s (25)

To enforce conservation the interface normal direction Ny in Eq. (22) is approximated with the cell-face aper-
ture differences. Strictly, Ny here is not the same as the level set normal direction at the grid point N;; (see Fig. 4)
which is also used to approximate the interface direction when solving for the interface condition for the same
cell. The latter is calculated by a standard central difference from the grid point level set values and is also used
to calculate cell volume fractions, extending quantities, and for mixing small cells. This apparent inconsistency
can be corrected by replacing the level set normal direction with the former at these grid points. However, as
both formulas are approximations with the same order, these slight differences have almost no effect on the re-
sults. Note that for the fluid corresponding to ¢ < 0 the transferred quantities have opposite sign to that of Egs.
(23) and (24). If the interface separates two fluids the momentum and energy transferred between the two fluids
have the same values but opposite sign and therefore satisfy the overall conservation property.

6. Implementation
A general procedure of the conservative interface method can be summarized as follows:
1. Given the cell-averaged density of conservative quantities U"” and fluid states for all grid points within nor-

mal cells, extend the fluid states to the grid points corresponding to the small or empty cells in near interface
region on the other side of the interface via Eq. (14).
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2. Solve the interface conditions on the grid points in the near interface region with the interface interaction
method of Hu and Khoo [20], and calculate the momentum and energy exchanges across the interface with
Eqgs. (23) and (24).

3. Proceed to the next time step and compute the unmixed conservative quantities (o
and the cells in near interface region via Eq. (8).

4. Calculate the level sets ¢""' in the near interface region for the new time step via Eq. (12) with the proce-
dure outlined in [20] which update the level set with interface velocity rather than the fluid velocity.

5. Re-initialize the level sets for the entire domain except the nearest region of the interface, usually the first
nearest cell-layer, via Eq. (13) (details can be found in [20]).

6. From ¢""' calculate the cell-face aperture with Eq. (16), the level-set normal direction with standard central
differences and volume fraction o' in the near interface region by Eqs. (17) or (18).

7. Invoke the mixing procedure for the small cells and newly created or vanished empty cells with Egs. (19)
and (20) to obtain o "'U"! from (o 'U"T)*.

8. Update the cell-averaged density of conservative quantities U""! and fluid states for all grid points within
normal cells.

U in all full cells

For multi-fluid problems, except steps 4-6, all steps are calculated separately for each fluid. For complex
static boundary problems the steps 5 and 6 may not be necessary. If the solid body associated with the complex
geometry moves with a prescribed velocity v,,(?), the level set moves with this prescribed solid body velocity. In
the case that the solid body moves by inertial coupling the solid body velocity is updated from the total
momentum variation. According to Eq. (4), the average acceleration in one time step is

LS xr(ar,) (26)

Mrg 5

A, =

and the velocity of the solid body after one time step can be obtained from

Vil = v 4 agAt (27)

For higher order time accuracy a Runge-Kutta time integration can be used. In each Runge-Kutta sub-step
all the above steps are invoked once, except for the re-initialization step 5 which is done only once after the last
sub-step. Currently, only two-dimensional problems are considered. However, the extension of the present
method to three dimensions is fairly straightforward. The only more evolved work is the calculation of cell
face apertures and the approximate form of the interface surface patch AI’ for a three-dimensional cut cell.

7. Numerical examples

The following numerical examples are provided to illustrate the potential of the present interface method.
For all test cases, one-phase calculations are carried out with a fifth-order WENO-LF [24] and a third-order
TVD Runge—Kutta scheme [41]. For one-dimensional examples, the number of grid points is 200 and the ref-
erenced exact solution, if exists, is sampled on 1000 grid points. In the two-dimensional examples, if not men-
tioned otherwise, the upper and lower boundaries are imposed with reflecting-wall boundary condition and
the left and the right boundaries imposed with outflow boundary condition with constant extrapolation.
All the computations are carried out with the CFL number of 0.6.

7.1. Gas—gas interaction (1)

Case I-A: We consider a gas—gas interaction problem with the following initial conditions
(1,0.5sin[n(1l — 0.5x)],1,1.4) if x < 0.5,
(.07 u,p, V) = . .
(1,0.5sin[n(1 — 0.5x)],1,1.8) if x > 0.5
and reflecting wall boundary condition applied at both x = 0 and x = 1. The case is computed up to time ¢ = 1.

We examine the numerical solutions with the reference “exact” solution computed with 1600 grid points.
Fig. 5 shows the calculated velocity and density profiles at time ¢ = 0,0.25,0.75 and 1. At the early stage of

(28)
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Fig. 5. Gas—gas interaction: Case I-A.

interaction the flow, as shown in Figs. 5b and c, is continuous with primarily only expansion and compression
waves transmitted across the interface. Later the flow depicts the presence of shock discontinuities, after the
two compression waves have been reflected from both ends and interact with the interface and with each other
(see Figs. 5¢c and d). These shock waves pass through the interface at about ¢t = 0.64 and 0.80, respectively. One
can observe that the computed results are in good agreement with the “exact” solution. Resolution studies are
carried out to measure the numerical convergence rate of the method. For different resolutions, Fig. 6 gives the
variations of total entropy of the left medium s, = Y elo/, where e/ and o/ are the entropy and the volume
fraction of the left medium in cell 7, respectively, and of total entropy st = ) _,e;o;, where e; and o; are the en-
tropy and volume fraction of the left or right medium in cell i, respectively. We measure the entropy errors
Ey=|s" — s /s at t = 0.2,0.64 and 0.8 corresponding to the time when the entropy assumes the extreme
value in a continuous flow or when the shock waves pass the interface. The entropy errors E. and E! for the
left and total medium, respectively, and the averaged order of convergence R, are given in Table 1. One can
find that high-order accurate results are obtained for the continuous flow. However, when there is a shock
wave and especially when the shock wave passes the interface, larger errors are produced with an order of con-
vergence decreasing towards unity.

Case I-B: We consider a well known air-helium shock tube problem with the following initial conditions

(1,0,1,1.4) if x < 0.5,
(p,u,p,y) =

29
(0.125,0,0.1,1.667) if x > 0.5. (29)
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Table 1
Errors and convergence rate for Case I-A
1//1 Et:0.2 Er;().z Et:0.64 Et?0.64 Et:O.S Et?O.S
50 3.7x107* 41x107* 52x1073 49%x1073 6.7x1073 56x1073
100 2.6x107° 9.2x107° 2.1%x1073 21x1073 3.1x1073 25%x1073
200 49%x107¢ 24%x107 7.1%x1074 92.0x107* 1.1x1073 1.1x1073
400 4.0x 1077 57x107° 12x107* 3.5%x 1074 28x107* 49%x107*
R, 3.3 25 1.8 1.3 1.6 1.2

Typical computational results at time ¢ = 0.15 are shown in Fig. 7. One can find the calculated results are in
reasonably good agreement with the exact solution. In particular, they have almost identical and correct shock
strength and speed. The interface position is also captured accurately. Note that there are larger density dis-
crepancies near the interface (also seen in the following Case I-C) compared with to the results of Fedkiw et al.
[12] (see their Fig. 8) and of Hu and Khoo [20] (see their Fig. 3). This is because the isobaric fix used in their
works produces better density profiles near interfaces. Similar treatments could also be employed in our meth-
od by modifying the states before computing the interface conditions. However, we prefer not to use the said
fix since it may violate conservation considerably. As shown in Fig. 7d, the calculated interface location sug-
gests better convergence property than that of Fedkiw et al. [12] (see their Figs. 7 and 8), the latter shows that
the interface position appears to be off by one cell for all levels of refinement as conservation at the interface is
not satisfied.
We compute the relative mass and energy variations for each fluid separately during the computation by
=N _npm
p = TP U (30)
Dico XU Ax
where U, is the cell-averaged mass density or energy density on cell i. The superscripts n and 0 represent the nth
time step and the initial condition, respectively. In a similar way, the total mass and energy variations are
given as

(o U+ (S U )| A
(20U )+ (S 20U | A

Fig. 8 compares mass and energy variation of each fluid to those obtained by the interface interaction
method of Hu and Khoo [20] (denoted as I-GFM). No conservation error is observed for the current method
as the error is of the order of machine accuracy of 10~

Viotal =

(31)
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Fig. 7. Case I-B: air-helium shock tube problem.

Case I-C: We compute a stiff air—helium shock tube problem, taken from [1,20], where the initial pressure
difference is much larger than that in Case I-B. The initial data are

( | {(1707500, 14)  ifx<0.5,
’u’ ’1 = :
PP = (1,0,0.2,1.667) if x > 0.5,

The computed results at time # = 0.015 are shown in Fig. 9. There is good agreement with the exact solution.
At the right end of the rarefaction waves on the pressure and velocity profiles, one can observe mild over-
shoots which becomes significant in [1] (see their Fig. 6). Their scheme also produces more numerical viscosity
which leads to stronger smearing of the shock front. It requires a much finer distribution of about 800 grid
points for a comparably sharp shock front . Note that these overshoots are replaced by undershoots in the
results of Hu and Khoo [20] (see their Fig. 4).

Case I-D: 2D air-helium interaction. In this 2-D problem, we compute a Mach 6 air shock wave interacting
with a cylindrical helium bubble. Numerical computations for the same problem can be found in [3] who treat
air and helium as the same fluid to avoid difficulties at the interface. For this case, the initial conditions are

(32)

(p=Lu=0,0=0p=1,y=14) pre-shocked air,
(p=5268,u=5752,v=0,p=41.83,7 =1.4) post-shocked air,
(p=0.138,u=0,0=0p=1,7=1.667) helium bubble, (33)
¢ = —0.025 + 1/ (x — 0.15)* +)? level set,

where ¢ < 0 represents the helium and ¢ > 0 represents the air, depicting a helium bubble of radius 0.025 at
(0,0.15) which is to be impacted by a shock wave initiated at x = (0.1. The computation has been carried out
with three increasing resolutions of Ax=Ay =5x10"%,2.5x 107 and 1.25x 107>,
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Fig. 8. Case I-B: conservation test.

Fig. 10 shows the calculated density contours at four selected time instances (Ax = Ay = 1.25 x 10~%). These
results show a fairly good agreement with those of Bagabir and Drikakis (their Fig. 6). The secondary reflected
shock wave and triple-wave configurations are calculated with good resolution as shown in Figs. 10b-d. As
Bagabir and Drikakis’s computational model does not treat interfaces, their bubble and jet shapes are smeared
and hard to identify especially after the transmitted shock wave has passed the bubble. In the present calcu-
lation these shape changes are accurately captured, including the strong instabilities at the interface which
even produce isolated air droplets in the helium bubble (see Figs. 10b and c). Also well represented is the inter-
face after the jet collides with the downstream bubble surface which evolves to produce small separated helium
pockets in the background air medium (see Fig. 10d). Another feature of the present method is that the com-
plex topological changes is treated rather naturally without difficulty. The interface at three selected time
instances is shown in Fig. 11a. It is observed that the helium bubble evolves into very complex geometries with
many separated parts. In the present model, when the separated droplet/pocket becomes smaller than the grid
size, the unresolved material is automatically discarded as the re-initialization procedure ignores details smal-
ler than the grid size and reconstructs the new level sets from the resolved region. These are further shown in
Fig. 11b which suggests the deleting of unresolved helium by a series of stair-step-like changes of total helium
mass. Note that these mass changes happen long time after the first topological changes (at about
t=1.1x107?) suggesting that topological changes do not violate the conservation property of the current
method. Fig. 11c shows the total force acting on the upper-half of the helium bubble. It is observed that sec-
ond order or super-linear convergence for the peak forces before the first topological change at about
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Fig. 9. Case I-C: stiff air-helium shock tube problem.

t=1.1x 102, After the topological changes, it is hard to evaluate the convergence rate as the interface-line
length is strongly dependent on interface instabilities, which suggest no simple dependency on grid sizes.
Fig. 11d compares the jet and upstream bubble surface trajectories calculated with different grid sizes. A sec-
ond-order convergence rate is obtained by computing total relative errors between successive grid sizes.

7.2. Gas—water interaction (II)

Case II-A: Gas—water shock tube problem. This problem is taken from [20]. A real gas equation of state is
used for the gas and Tait’s equation of state for the water medium. The initial conditions are given as

(0.01,0,1000,2) if x < 0.5,
(p,u,p,7) =

34
(1,0,1,7.15)  if x> 0.5. (34)

In this problem the high pressure gas expands slowly comparing to the transmitted and reflected wave front
speeds. Fig. 12 shows the computed results at time ¢ = 0.0008. Note that the present results indicate slightly
more accurate solutions for the rarefaction wave in gas medium and the transmitted shock wave in water than
those of Hu and Khoo [20]; the latter produces a slight overshot at the rarefaction wave and small differences
in the velocity at the water—gas interface (see their Fig. 12).

Case II-B: Shock impacting on an air-water interface. We here consider the initial conditions

( | { (1.037578, 6.0151,1000,7.15) if x < 0.7, 55)
7”’ ’1 = .
PP = (0.001,0, 1, 1.4) if x> 0.7.

This is an air bubble collapse problem in one dimension. While the gas bubble collapses, the underwater
shock wave impacts at the interface resulting in a weak shock wave transmitted into the air and a very strong
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Fig. 11. Case I-D: (a) interfaces at three selected time instances, (b) time variation of the difference between total helium mass to its initial
value, (c) forces on the upper-half of the helium bubble with different grid sizes, (d) jet and downstream bubble surface trajectories with
different grid sizes.

and which are taken from [37]. The reflecting wall boundary condition is used for the left boundary. We do not
implement a boundary condition to the right boundary as the disturbance does not arrive there in the calcu-
lations. As in [37] a stiff gas equation of state is used for water, i.e. (y — 1)pe = p + ypo where y = 5.5 and
po =4921.15. To obtain a mesh converged bubble oscillation period the calculation is performed with grid
sizes of Ax =0.2, 0.1, 0.05, 0.025 and 0.0125, corresponding to 0.8, 1.6, 3.2, 6.4 and 12.8 grid points (compu-
tational cells) for the initial gas bubble of 16 cm radius.

Fig. 14 shows the calculated bubble radius and interface pressure history with different grid sizes, both of
which suggest a second-order convergence rate. The converged results, such as a bubble oscillation period of
about 0.2 s and a maximum bubble radius at about 3 m at time 7 = 0.1 ms, are in good agreement with pre-
vious ALE calculation [37]. Our results also show pressure oscillations at the interface which has been found in
p